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Abstract
The boiling crisis (BC) is well known in the world of heat and mass transfer.
It is a transition from nucleate boiling (i.e. boiling in its usual sense) to film
boiling, where the heater is covered by a continuous vapour film. The BC
is observed when the heat flux from the heater exceeds a critical value. Heat
exchange then falls down and endangers the exchanger whose temperature rises
abruptly. The physical mechanism of the BC is still under debate. We propose
the recoil force (the thrust of vapour production) at the solid–liquid–vapour
contact line to lie at the origin of the BC. At large heat flux, the recoil force
tends to spread the vapour bubble that otherwise would not wet the solid. We
give both analytical and numerical analysis in support of this idea. We also
report experiments under microgravity conditions performed with near-critical
fluids (SF6 and CO2). The absence of gravity effects and the vicinity of the
critical point where the liquid–vapour surface tension vanishes emphasize the
influence of the recoil force: during heating, the vapour drop is indeed seen to
spread.

1. Introduction

Boiling is a very efficient way to transfer heat from solid to liquid. The bubble growth in
boiling has attracted much attention from many scientists and engineers. In spite of these
efforts, some important aspects of the growth of a vapour bubble attached to a solid heater
remain misunderstood even on a phenomenological level. The most important aspect is the
‘boiling crisis’ (BC), a transition from nucleate boiling (where vapour bubbles nucleate on the
heater) to film boiling (where the heater is covered by a continuous vapour film). The BC is
observed when the heat flux qS from the solid heater exceeds a threshold value which is called
the ‘critical heat flux’ (CHF). The rapid formation of the vapour film on the heater surface
3 Author to whom any correspondence should be addressed. Mailing address: CNRS-ESEME, Institut de Chimie de
la Matière Condensée de Bordeaux, 87, Avenue du Dr Schweitzer, 33608 Pessac Cedex, France.
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decreases the heat transfer steeply and leads to a local heater overheating. In the industrial heat
exchangers, the BC can lead to melting of the heater, thus leading to a potentially dangerous
accident. Therefore, the determination of the CHF is extremely important.

A clear understanding of the triggering mechanism of the BC is still lacking. The
knowledge of what happens at the foot of the bubble which grows attached to the heater
is crucial for the correct modelling of the BC. We proposed recently [1] that the recoil force
(the thrust of production of vapour), by making the bubble spread over the heater surface, could
lie at the origin of the BC. Numerical simulations of the thermal field around the bubble [2]
support this claim.

The experimental observations at large heat fluxes close to the CHF are complicated by
the violence of boiling and optical distortions caused by the strong temperature gradients.
Nevertheless, near the critical point, the CHF is very small and the bubble evolution is very
slow. We recently carried out boiling experiments under microgravity in the proximity of the
critical point [3]. Microgravity, which cancels buoyancy forces, is a powerful tool for studying
the phenomena near the vapour–liquid–solid contact line. In the present report we review the
main results obtained theoretically and compare with the microgravity experiments.

2. The recoil force at the triple contact line

BC is a really universal phenomenon which occurs inevitably for pool boiling as well as for
flow boiling and for different flow structures, flow velocities, and liquid temperatures and
pressures. The phenomenon is local [4]: it depends strongly only on the local values of the
parameters in a very thin layer of liquid adjacent to the heating surface. The most important
parameter is the distribution of the local temperature. As a consequence of the local origin
of the BC, the threshold depends strongly on the wetting properties of the heating surface.
Numerous experiments [5, 6] show the general tendency: a poor wetting of the heating surface
by the liquid decreases the CHF and vice versa.

Experiments on visualization [7, 8] of dry spots under the vapour bubbles on the heating
surface show that at the CHF a single dry spot suddenly begins to spread. In [9–11] the vapour
recoil instability [12] is proposed as a reason for the BC. Although it is not clear how an
instability can induce the spreading of the dry spots, the authors show that the vapour recoil
force can be important at large evaporation rates. The force originates in the uncompensated
momentum of vapour which is generated on the liquid–vapour interface during the evaporation.
In the reference frame of the bulk liquid, the momentum conservation implies

�Pr + η(�vV + �vi ) = 0, (1)

where �Pr is the vapour recoil force per unit interface area, η is the evaporated mass per unit
time and unit interface area, �vi is the interface velocity, and �vV is the vapour velocity with
respect to the interface. It is easy to establish that �vi = −(η/ρL)�n, where �n is a unit vector
normal to the interface directed inside the vapour bubble (figure 1). The mass conservation on
the interface yields �vV = −(ρL/ρV )�vi , where ρL and ρV are the mass densities of the liquid
and the vapour. Therefore, equation (1) implies [12]

�Pr = −η2(ρ−1
V − ρ−1

L )�n. (2)

The surface deformation caused by this force is important whenever the evaporation is strong.
The rate of evaporation η can be related to the local heat flux across the interface qL by

the equality

qL = Hη, (3)

where H is the latent heat of evaporation. Hereafter, we neglect heat conduction in the vapour
with respect to the latent heat effect.
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Figure 1. A vapour bubble on the heating surface surrounded by liquid. The directions of the
vectors �Pr and �n are shown as well as the axes for the coordinate system.

3. Vapour recoil and bubble spreading

Below, we consider a case of a system at high pressure, where the growth of the bubble is slow
and the problem may be considered in the quasi-static approximation.

The spreading of the dry spot looks similar to the spreading of a liquid that wets a solid.
But in the case of the BC, it is vapour that spreads over the solid. This never happens for a
non-metal liquid under equilibrium conditions (zero heat flux) on a perfectly clean and smooth
metal surface [14], the finite contact angle being possible due to the surface defects only.
A kind of drying transition occurs due to the vapour recoil force at some heat flux that we
associate with the CHF.

Using the quasi-static approximation, the variational approach [15] can be applied to
analyse the shape of a vapour bubble just before the BC. The free energy of the system consists
of two parts. The first part is conventional [15]:

U1 = σ A + σV S AV S + σL S AL S − λV , (4)

where σ , σV S , and σL S are the surface tensions for vapour–liquid, vapour–solid, and liquid–
solid interfaces respectively; AV S and AL S are the corresponding interface areas; and A is
the area of the vapour–liquid interface. The last term in (4) reflects the fact that the shape of
the bubble should be found for its given volume V , λ (i.e. the Lagrange multiplier) being the
difference between the pressures inside and outside of the bubble.

The second part U2 of the free energy accounts for the virtual work of the external forces:

δU2 = −
∫

(A)

�Pr · δ�r d A. (5)

The minimization δU1 + δU2 = 0 of the total energy leads [15] to two equations. The first is
the condition for local equilibrium of the interface:

Kσ = λ + Pr , (6)

where K is the local curvature of the bubble and Pr = | �Pr |. The second equation is cos θ = b,
where b = (σV S − σL S)/σ and θ is the contact angle (figure 1). For the case b > 1 the second
equation should be replaced by the condition θ = 0.

Let us denote by y the distance along the bubble contour measured from the triple line
to a given point M as shown in figure 1. To find the bubble shape by solving equation (6)
we need to know the vapour recoil as a function of y. In the following, we introduce a
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rough approximation to solve the very complicated problem of the heat exchange around the
growing bubble. The case of saturated boiling is assumed. Thus the vapour–liquid interface is
maintained at temperature Ts , the saturation temperature at the system pressure. We also
assume for simplicity that the thermal effect of convection can be taken into account by
renormalizing the liquid thermal conductivity. To estimate how Pr varies near the contact
line (i.e. when y → 0) we suppose the bubble to be two dimensional with the contact angle
θ = π/2. Since we describe the heat exchange in a thin layer adjacent to the heating surface,
we can imagine the bubble contour A to be a line Oy perpendicular to the Ox heater line.
Then qL can be obtained from the solution of a simple two-dimensional problem of unsteady
heat conduction in a quarter plane x, y > 0, the point O(x = 0, y = 0) corresponding to the
contact line. The boundary and the initial conditions for this problem can be written in the form
TL |x=0 = Ts , −kL ∂TL/∂y|y=0 = qS , TL |t=0 = Ts , where TL(x, y, t) is the liquid temperature,
kL is the liquid thermal conductivity, and qS is the heat flux from the heating surface which is
assumed to be uniform for the case of the thin heating wall. The solution for this problem of
heat conduction reads

TL = Ts +
qS

kL

√
αL

π

∫ t

0

dt√
t

erf

(
x

2
√

αL t

)
exp

(
− y2

4αL t

)
, (7)

where αL is the liquid thermal diffusivity. This solution implies the following expression for
qL(y):

qL = −kL
∂TL

∂x

∣∣∣∣
x=0

= −qS

π
E1

(
y2

4αL t

)
. (8)

The exponential integral E1(y) [16] decreases as exp(−y)/y as y → ∞ and diverges
logarithmically at the point y = 0. In the following we will use for illustration the dependence
Pr (y) in the form that retains these physical features:

Pr = −C log(y/L) exp[−(y/yr)
2], (9)

where L is the length of the half-contour of the 3D axially symmetrical bubble and C is a
constant. The characteristic length of the vapour recoil decay yr changes over time and is
proportional to

√
αL t (cf (8)). Meanwhile, the bubble grows and its radius is proportional to

the same factor [13] during the late stages of its growth. Therefore, yr is proportional to the
bubble size, this fact is taken care of by the expression

yr = aL, (10)

where a is the non-dimensional fraction of the bubble surface on which the vapour recoil is
important. From the physical point of view, yr characterizes the width of the superheated layer
of liquid, which is always less than the bubble size [13]; thus a � 1. This allows the upper
limit of integration to be put to infinity in the following expression for the non-dimensional
strength of the vapour recoil:

Nr = 1

σ

∫ ∞

0
Pr dy. (11)

The integration can be performed analytically, yielding the relation between C and Nr :
Nr = [CaL/(4σ)]

√
π[γ +log(4/a2)], where γ = 0.577 . . . is Euler’s number [16]. Although

the expression (9) for the vapour recoil pressure is not rigorous, it contains the main physical
features of the solution of the heat conduction problem: a weak divergence at the contact line
and a rapid decay away from it. It is shown in [2] that the rigorous numerical solution obtained
far from the critical point follows this behaviour.

At low pressures, when the bubble growth is fast, additional (‘inertial resistance’) forces
of hydrodynamicorigin should be included into (6). In addition, the influence of the associated
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Figure 2. (a)–(d) A time sequence of cell images during a temperature ramp. The calculated
bubble shape for different values of the non-dimensional strength of vapour recoil Nr that goes to
infinity at the critical point is shown in the lower row. Note that the actual contact angle is zero for
all the curves.

convection on the temperature variation should be taken into account. However, the vapour
recoil should still control the bubble spreading.

4. Experiments under microgravity near a critical point

We consider here results that were obtained using a sample of SF6 at near-critical density
(off by +0.25%). The critical coordinates of SF6 are: Tc = 318.717 K, ρc = 742 kg m−3,
pc = 3.754 MPa. The sample was heated at various rates in a cylindrical cell on the Mir space
station using the Alice-II instrument [18]. This instrument is specially designed to obtain
high-precision temperature control (stability of ≈15 µK over 50 h, repeatability of ≈50 µK
over seven days). To place the sample near the critical point, a constant-mass cell was prepared
with a high-precision density, to 0.02%, by observing the volume fraction change of the cells
as a function of temperature on the ground. The fluid layer is sandwiched between two parallel
sapphire windows and surrounded by a copper alloy housing in the cylindrical optical cell with
an inner diameter of 12 mm and the thickness H = 1.664 mm.

The liquid–gas interface is visualized through light transmission normal to the windows.
Since the windows were glued to the copper alloy wall, some of the glue is squeezed inside
the cell. This glue forms a ring that blocks the light transmission in a thin layer of the fluid
adjacent to the copper wall making it inaccessible for observations. Because of this glue layer,
the windows may also be slightly tilted with respect to each other. As the drop is pressed
against the windows, even a tiny angle between them results in a steady force that pushes the
bubble toward the wall; see figure 2. A 10 mm diameter ring was engraved on one of the
windows of each cell in order to calibrate the size of the images. The sample cell is placed
inside a thermostat. The temperature is sampled every second and is resolved to 1 µK.

The cell is heated from room temperature nearly linearly in time t at a rate ≈7.2 mK s−1.
Figure 2 shows the time sequence of the images of the cell. The interface appears dark because
the liquid–gas meniscus refracts the normally incident light away from the cell axis. After the
temperature ramp is started but still far from the critical temperature, the bubble shape changes.
The contact area AV S of the gas with the copper wall appears to increase. This increase is
accompanied by an evident increase in the apparent contact angle; see figure 2.

Temperature quenches—i.e. fast temperature jumps from one temperature to another—
were also performed, at different distances from Tc. The typical value for a quench is 0.1 K. The
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quench images [3] also show bubble spreading, slight far from the critical point and stronger
near the critical point. After each quench, as soon as the heating stops, the bubble interface
begins to return to its initial form.

5. Interface evolution during heating

The above experimental data showed that the spreading gas and the associated interface
deformation are caused by an out-of-equilibrium phenomenon. Marangoni convection due
to a temperature change δTi along the gas–liquid interface cannot be the source of such an
evolution, since (i) convection is not observed in the video films and (ii) the interface must
remain at constant (saturation) temperature throughout the process [3].

The bubble is thus deformed by the normal stress exerted on the interface by the recoil from
departing vapour. The interface shape can be determined from (6), where the 3D curvature
K is equal to the sum of the 2D curvature c in the image plane and the 2D curvature in the
perpendicular plane. For the small cell thickness H , this latter curvature can be accurately
approximated by the constant value 2/H . This is possible because the relatively small heat
flow through the less conductive sapphire windows implies a small Pr near the contact line on
the windows, as compared to the large value of λ for this small H . The interface shape can
thus be obtained from the 2D equation

σc = λ′ + Pr (y), (12)

where λ′ is a constant to be determined from the known vapour area at the image and y is a
coordinate that varies along the bubble contour in the image plane as in figure 1.

In order to find the distribution of the evaporation rate η(�x) at the interface it is necessary
to solve the entire heat transfer problem. Because the bulk temperature varies sharply in the
boundary layer adjacent to the walls of the cell and the interface temperature is constant, the
largest portion of mass transfer across the interface takes place near the triple contact line.
Thus η(�x) is large in the vicinity of the contact line.

We assume that η(�x) has the following form:

η(�x) = g(�x)(Tc − T )ω (13)

as T → Tc, i.e., it has the same local behaviour with respect to temperature as the critical
temperature is approached. The integral rate of change of mass M of the gas bubble is defined
as

dM/dt =
∫

η(�x) d�x ∼ (Tc − T )ω, (14)

where the integration is performed over the total gas–liquid interface area. On the other hand,

dM/dt = d(V φρG)/dt, (15)

where φ = 0.5 is the gas volume fraction. Near the critical point, the coexistence curve has
the form ρG = ρc − ρ/2, where ρ ∼ (Tc − T )β with the universal exponent β = 0.325,
so dM/dt ∼ (Tc − T )β−1(dT/dt) as T → Tc according to equation (15). Thus equation (14)
results in ω = β − 1 and the curvature change due to the vapour recoil scales as

Pr/σ ∼ (Tc − T )3β−2−2ν , (16)

where equation (2) and the scaling relationship σ ∼ (Tc − T )2ν (ν = 0.63) were employed.
Because this critical exponent (3β − 2 − 2ν ≈ −2.3) is very large, it manifests itself even far
from the critical point in agreement with the experiments. In summary, as T → Tc, the vapour
mass growth follows the growth of its density (the vapour volume remains constant), so the
diverging vapour production near the critical point drives a diverging recoil force.
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This curvature change has a striking effect on the bubble shape because it is not
homogeneously distributed along the bubble interface. Since the evaporation is strongest
near the copper heating wall where the strongest temperature gradients form, both Pr and c
increase strongly near this wall, i.e. near the triple contact line. Because the interface slope
changes so abruptly near the contact line, the apparent contact angle is much larger than its
actual value.

In order to illustrate a possible solution of equation (12), we solved it for Pr (y) as above
in equation (9) with yr = 0.1L, following the method described in [1]. The result of this
calculation is shown in figure 2. Since equation (16) implies

Nr ∼ (Tc − T )−2.3 → ∞ (17)

as T → Tc, the increase in Nr mimics the approach to the critical point and qualitatively
explains the observed shape of the vapour bubble (see figure 2). The increase of the apparent
contact angle and of the gas–solid contact area AV S can be seen in this figure 2.

6. Conclusions

Very similar bubble spreadings are also observed far from Tc (i.e. at low pressures) during
boiling at large heat flux [7, 8]. The main difference is that the large value of Nr results from
a large vapour production that can be achieved during strong overheating rather than from the
critical effects. Although we did not model this case characterized by the influence of ‘inertial
resistance’ hydrodynamic forces that distort the bubble, the vapour spreading due to vapour
recoil still exists. The vapour recoil mechanism is thus a quite general explanation for the BC.

It is well documented from experiments [13] that the CHF decreases rapidly when the
fluid pressure p approaches the critical pressure pc, i.e., when T → Tc in our constant-
volume system. Previously, this tendency has not been well understood. The divergence of
the factor Nr , discussed above, helps us to understand it. We first note that the evaporation
rate η scales as the applied heat flux qS and Nr ∼ q2

S , where equations (2) and (11) are used.
By assuming that the BC (qS = qCH F ) begins when Nr attains its critical value NCH F ∼ 1
(i.e. when the vapour bubbles begin to spread), one finds that

qCH F ∼ (Tc − T )1+ν−3β/2 ∼ (Tc − T )1.1 (18)

from equation (17). The same exponent is also valid for the pressure scaling:

qCH F ∼ (pc − p)1.1. (19)

Equation (19) explains the observed tendency qCH F → 0 as p → pc.
Although the strict requirements on temperature stability and the necessity of

weightlessness lead to experimental difficulties for studying the BC in the near-critical region,
they also present some important advantages. Only a very small heating rate (heat flux) is
needed to reach the BC because qCH F is very small. At such low heat fluxes, the bubble
growth is extremely slow due to the critical slowing down. In our experiments, we were able
to observe the spreading gas (i.e. the dry-out that leads to the BC; see figure 2) for 45 min.
Such experiments not only permit an excellent time resolution, but also allow the complicating
effects of rapid fluid motion to be avoided.
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